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(PART 2: NONCOMPACT SYMMETRIC SPACES)
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Whenever G is a Lie group with finitely many connected compo-
nents, a fundamental result (see, for example, Theorem 14.1.3 of [3])
in the general structure theory of Lie groups tells us that G has a max-
imal compact subgroup, and that all maximal compact subgroups are
conjugate to each other. Moreover, maximal compact subgroups con-
tain all of the nontrivial aspects of the topology of G: for K ≤ G a
maximal compact subgroup, G is diffeomorphic—though generally not
isomorphic—to the product of K with a vector space.

We saw this, for example, in Euclidean geometry: I(2), viewed as
the orthonormal frame bundle over R2, was clearly diffeomorphic to
R2 × O(2); indeed, it was isomorphic to R2 ⋊ O(2). Here, O(2) is a
maximal compact subgroup of I(2), and all other maximal compact
subgroups of I(2) are conjugate to O(2).

As we said earlier, if we want to find geometrically interesting models,
then it makes sense to look for Lie-theoretically interesting models.
Choosing our isotropy to be a maximal compact subgroupK is amongst
the most Lie-theoretically interesting choices we can make in this case,
and if, moreover, we choose our model group G to be a semisimple Lie
group, then the underlying geometry is, as we would expect, remarkably
deep. Such models (G,K) correspond to Riemannian symmetric spaces
of noncompact type, and the Killing form gives several key tools for
studying them, including:

• A ŋ-orthogonal decomposition of the Lie algebra of the model
group, called the Cartan decomposition

• A canonical Riemannian metric and notion of distance on G/K
• A convenient description of the stabilizers of “points at infinity”

While this doesn’t directly help us understand the Killing form unless
we already have experience with symmetric spaces, it does let us visu-
alize several important interactions between the Killing form and the
underlying representation theory. In particular, it will give us insight
into what parabolic subgroups look like, and in the next lecture, we
will explore our algebraic definition of parabolic subgroups and connect
it to the more immediately geometric idea of “points at infinity”.
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1. Riemannian symmetric spaces of noncompact type

For the rest of the lecture, let us fix a model (G,K), where G is a
semisimple Lie group with finitely many connected components such
that the identity component G◦ has finite center and K is a maximal
compact subgroup. In this case, the notion of Killing perpendiculars
gives us a very convenient description of the topological decomposition
of G as a product of K with a vector space.

Definition 1.1. For a subspace V ⊆ g, its Killing perpendicular (or
Killing perp) is the subspace

V ⊥ := {X ∈ g : ŋ(X, v) = 0 for each v ∈ V }.
In our case, the Lie algebra g decomposes, as a vector space, as a

ŋ-orthogonal direct sum k⊥ ⊕ k, where the subspace k⊥ is the Killing
perp of the Lie subalgebra k corresponding to K. The exponential map
restricts to an embedding on k⊥, so that exp(k⊥) is diffeomorphic to
k⊥, and moreover, the map µ : exp(k⊥) × K → G given by apply-
ing the group operation (exp(X), k) 7→ exp(X)k is a diffeomorphism.
In particular, the usual quotient map q

K
: G → G/K restricts to a

diffeomorphism from exp(k⊥) to G/K, and we get a projection map

pr : G → exp(k⊥),

which induces a section of q
K
.

Figure 1. The projection pr : G → exp(k⊥) gives a
section to the natural quotient map q

K
: G → G/K

The decompositions g = k⊥⊕k for the Lie algebra and G = exp(k⊥)K
for the Lie group are both called the Cartan decomposition correspond-
ing to K. At the level of Lie algebras, we can think of this as a decom-
position into symmetric and skew-symmetric elements.
We’ve actually seen this before with hyperbolic geometry. In that

case, our model (G,K) had G = PO(1, n) and K ≃ O(n), and we
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had a nice projection map that we used to give a diffeomorphism from
PO(1, n)/O(n) = Hn to Rn after recognizing a subspace

k⊥ =

{(
0 v⊤

v 0

)
: v ∈ Rn

}
vaguely analogous to translations in the Euclidean case. It turns out
that the symmetric space projection map pr : PO(1, n) → exp(k⊥) for
hyperbolic geometry is given by(

a α
x R

)
7→

(
a x⊤

x 1+ 1
1+a

xx⊤

)
,

and the image of this projection is uniquely determined by x ∈ Rn. Af-
ter identifying pr(( a α

x R )) with x, the induced map from PO(1, n)/O(n)
to Rn happens to coincide with that nice projection map that we used
to identify Hn ∼= Rn ∼= exp(k⊥).

For Cartan decompositions, our heuristic for the Killing form works
exactly as expected: on the subalgebra k corresponding to the maxi-
mal compact subgroup, ŋ is negative-definite, and on the subspace k⊥,
whose elements generate scaling transformations in the adjoint repre-
sentation, ŋ is positive-definite. This gives us an easy way of describing
the pushforward projection pr∗ : g → k⊥ at the identity: for X ∈ g, the
projection pr∗(X) ∈ k⊥ is the element X ′ ∈ X + k for which ŋ(X ′, X ′)
is maximal. Moreover,

ŋ(X, Y ) = ŋ(pr∗(X), pr∗(Y )) + ŋ(X − pr∗(X), Y − pr∗(Y )),

so we can genuinely decompose ŋ(X,X) as the sum of the “scaling part”
and the “compact part”, and for X ∈ k⊥, ŋ(X, Y ) = ŋ(X, pr∗(Y )).

Since pr∗ induces an isomorphism between g/k and k⊥, we can iden-
tify the tangent bundle T (G/K) ∼= G ×K g/k with the homogeneous
vector bundle G ×K k⊥. This isomorphism also gives us a canonical
choice of Riemannian metric on G/K: ŋ is positive-definite on k⊥, so
for X, Y ∈ TgK(G/K), we can define a Riemannian metric pr∗ŋ by

pr∗ŋ(X, Y ) := ŋ(pr∗(Lg−1∗X), pr∗(Lg−1∗ Y )).

By construction, this is invariant under the canonical left-action of G,
so it is a geometric object for the model.

Of course, for Riemannian manifolds, we get an associated notion
of geodesic. As we did before with Euclidean geometry and hyper-
bolic geometry, though, we’ll define geodesics in terms of motion rather
than the Riemannian metric. Specifically, we can think of k⊥ as being
analogous to the subspace of translations in Euclidean geometry, and
we define geodesics as (projections of) left-translates of one-parameter
subgroups generated by elements of k⊥.

Definition 1.2. A geodesic for the model geometry (G,K) is a curve
γ : R → G/K of the form t 7→ q

K
(g exp(tX)) for some g ∈ G and

X ∈ k⊥.
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Figure 2. Geodesic motion corresponds to starting at
some configuration in G, then moving with ω

G
-constant

velocity in k⊥

As before, this corresponds to starting at some configuration g ∈ G,
picking a velocity X ∈ k⊥, and at each point in time moving with the
velocity that the Maurer-Cartan form identifies with X, so that we
move with “constant velocity”; by construction, every left-translate of
a geodesic is again a geodesic, so geodesics are geometric for (G,K).
In this case, geodesics in our sense coincide with geodesics in the Rie-
mannian sense.

This is, of course, not a very thorough introduction to the topic
of Riemannian symmetric spaces of noncompact type. For such an
introduction, we highly recommend [2].

2. Asymptotic behavior of geodesics

Another concept that makes sense for Riemannian manifolds is the
distance between two points. Indeed, if we know the projection map
pr : G → exp(k⊥), then distance is fairly straightforward to find in
this case: for elements g0, g1 ∈ G, there is a unique X ∈ k⊥ such that
exp(X) = pr(g−1

0 g1), and the distance dist(q
K
(g0), qK (g1)) from q

K
(g0)

to q
K
(g1) is just

√
ŋ(X,X).

For us, the main use for this is to describe the asymptotic behavior
of geodesics, since this will lead us to parabolic subgroups.
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Definition 2.1. Suppose γ1 and γ2 are unit-speed geodesics in G/K.
We say that γ1 and γ2 are asymptotic if and only if the distance
dist(γ1(t), γ2(t)) is bounded for t ≥ 0.

Figure 3. Several asymptotic geodesics and their cor-
responding point at infinity

This defines an equivalence relation on geodesics, and an equivalence
class of asymptotic geodesics is called a point at infinity.

Definition 2.2. An equivalence class of asymptotic geodesics is called
a point at infinity. For a geodesic γ, we denote its corresponding point
at infinity by γ(+∞).

Topologically, we can identify the space of all points at infinity with
the unit sphere in k⊥, since each Z ∈ k⊥ with ŋ(Z,Z) = 1 uniquely
determines a unit-speed geodesic of the form t 7→ q

K
(exp(tZ)), and

every point at infinity corresponds to exactly one such geodesic.

3. Prelude to parabolic subgroups

In the trichotomy for elements of sl2R in terms of conic sections from
last time, a considerably more well-known characterization of parabolic
transformations is as transformations that fix a single point at infin-
ity for the hyperbolic plane. With this in mind, it almost wouldn’t
be ridiculous to call the stabilizer subgroup of a point at infinity, or
more generally a finite-index subgroup of such a stabilizer, a parabolic
subgroup.

While this does give a mostly valid1 definition for parabolic sub-
groups, it would be kind of annoying to use in practice. Imagine we
found a closed subgroup of G and we wanted to check whether it was
parabolic; without more information, we’d basically have to start check-
ing geodesics to see whether their asymptotic behavior was preserved

1It should be noted that some larger subgroups, such as G itself, would be
considered parabolic by most representation theorists, even though they don’t fix
a point at infinity. Our algebraic definition below accounts for this.
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by our subgroup. We’d like a more direct definition, preferably one
that comes from the structure of the Lie algebra.

In an attempt to ascertain such a definition, let’s start with a point
γ(+∞) at infinity and try to find its stabilizer. As we mentioned above,
we may assume that our geodesic γ is of the form t 7→ q

K
(exp(tZ)) for

some Z ∈ k⊥.
An element g ∈ G fixes γ(+∞) if and only if gγ is asymptotic to γ.

Thus, we want to find g ∈ G such that

gγ(t) = q
K
(g exp(tZ)) = q

K

(
exp(tZ)(exp(tZ)−1g exp(tZ))

)
is a bounded distance away from γ(t) = q

K
(exp(tZ)) for all t ≥ 0,

which amounts to showing that pr(exp(tZ)−1g exp(tZ)) is bounded. In
particular, for g = exp(X) for some X ∈ g, we have

exp(tZ)−1g exp(tZ) = exp(tZ)−1 exp(X) exp(tZ)

= exp(Adexp(tZ)−1(X)),

so we want to find X ∈ g such that pr∗(Adexp(tZ)−1(X)) is bounded for
t ≥ 0.

Because adZ is diagonalizable over R, we can decompose g, as a
vector space, as g− ⊕ g0 ⊕ p+, where g− is the sum of all the negative
eigenspaces for adZ , g0 is the centralizer zg(Z) of Z, and p+ is the sum
of all the positive eigenspaces for adZ . Equivalently, we could define
g− as

g− :=
{
X ∈ g : Adexp(tZ)(X) → 0 as t → +∞

}
and p+ as

p+ :=
{
X ∈ g : Adexp(tZ)−1(X) → 0 as t → +∞

}
.

Because Adexp(tZ) is an automorphism, both g− and p+ are subalge-
bras, which homogeneous dynamicists would call the contracting and
expanding horospherical subalgebras of Z, respectively. (See, for exam-
ple, the excellent book [4].)

Crucially, note that Adg(X) has the same eigenvalues in the adjoint
representation as X, so elements of the expanding and contracting
horospherical subalgebras only have 0 as an eigenvalue under the ad-
joint representation, which means that elements of these subalgebras
are always ad-nilpotent. In particular, g− and p+ are always nilpotent
subalgebras of g.

Writing X = X− +X0 +X+, with X− ∈ g−, X0 ∈ g0, and X+ ∈ p+,
we see that

pr∗(Adexp(tZ)−1(X)) = pr∗(Adexp(tZ)−1(X−) +X0 +Adexp(tZ)−1(X+))

is bounded for all t ≥ 0 if and only if X− = 0. Thus, the Lie subalgebra
of the stabilizer subgroup for γ(+∞) is precisely p := g0 + p+.
Before moving on, it’s well-worth trying to visualize this decomposi-

tion, since it will be very important from here onward.
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Let us once again imagine ourselves as observers in the model group
G, moving geodesically using right-translation by exp(tZ). At each
configuration in G, we can use the Maurer-Cartan form ω

G
to decom-

pose the tangent spaces according to the decomposition g− + g0 + p+
for g. Since g−, g0, and p+ are subalgebras, the corresponding distri-
butions are integrable, with integral submanifolds corresponding to the
left-cosets of the connected subgroups generated by each subalgebra.

Figure 4. Using the Maurer-Cartan form ω
G
, we can

decompose tangent spaces of G as sums of the integrable
distributions ω−1

G
(g−), ω

−1
G
(g0), and ω−1

G
(p+)

Let us denote by G− and P+ the connected subgroups generated by
g− and p+, respectively. Then, the integral submanifold for ω−1

G
(g−)

through g ∈ G is precisely gG−, and similarly, gP+ is the integral sub-
manifold for ω−1

G
(p+) through g. As one might imagine from the term

“horospherical subalgebra”, these left-cosets for G− and P+ project to
horospheres under the quotient map q

K
.

Consider a starting configuration g ∈ G and an element p ∈ P+,
so that g and gp lie on the same integral submanifold for ω−1

G
(p+).

Then, moving by exp(tZ) at both these points, g goes to g exp(tZ) and
gp goes to gp exp(tZ) = g exp(tZ)(exp(tZ)−1p exp(tZ)). Essentially
by definition of P+, exp(tZ)

−1p exp(tZ) will converge to the identity
element as t → +∞, so g exp(tZ) and gp exp(tZ) get closer and closer
together for larger and larger t. In other words, motion by exp(tZ)
contracts the leaves gP+.

Similarly, motion by exp(tZ) expands the leaves gG− of the distribu-
tion ω−1

G
(g−). We call the foliation from the distribution ω−1

G
(p+) the

stable foliation for Rexp(tZ) and the foliation from ω−1
G
(g−) the unstable

foliation for Rexp(tZ).
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Figure 5. Moving by exp(tZ) contracts the leaves of
the stable foliation generated by ω−1

G
(p+)

We should remark that homogeneous dynamicists are typically in-
terested in the behavior of elements of G as transformations. Since
we want to consider elements of G in terms of motions here—acting
on the right so that we preserve left-invariance—the roles of the
expanding and contracting horospherical subgroups are reversed:
the left-cosets of the “expanding” horospherical subgroup P+ are
contracted by moving by exp(tZ), and the left-cosets of the “con-
tracting” horospherical subgroup G− are expanded.

Since Z is centralized by g0, motion by exp(tZ) doesn’t affect the
distribution ω−1

G
(g0): for every X ∈ g0, Rexp(tZ)∗ ω

−1
G
(X) = ω−1

G
(X).

We call the foliation generated by ω−1
G
(g0) the neutral foliation. Since

Z obviously centralizes itself, the leaf of this foliation through g ∈ G
will contain the full geodesic trajectory g exp(RZ) of g. This allows us
to imagine these leaves as “tubes” of asymptotic geodesic trajectories.

For X1 and X2 eigenvectors of adZ with respective eigenvalues λ1

and λ2, we have

0 = ŋ(adZ(X1), X2) + ŋ(X1, adZ(X2)) = (λ1 + λ2)ŋ(X1, X2),

so ŋ(X1, X2) = 0 unless λ1 + λ2 = 0. In particular, since p+ is the
sum of the positive eigenspaces, this tells us that p+ is ŋ-orthogonal to
both itself and g0, and similarly, g− is ŋ-orthogonal to both itself and
g0. Moreover, because ŋ is nondegenerate, this also tells us that the
eigenvalues of adZ must occur in pairs ±λ, with the eigenspace for λ
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Figure 6. Each leaf of the neutral foliation generated
by ω−1

G
(g0) consists of a tube of asymptotic geodesic tra-

jectories of the form g exp(RZ)

dual to the eigenspace for −λ with respect to ŋ, and ŋ must remain
nondegenerate when restricted to the 0-eigenspace g0.

To summarize the picture, we have a tube of asymptotic geodesic
trajectories around each configuration g ∈ G, corresponding to the leaf
of the neutral foliation through g, together with two left-cosets gP+

and gG−, corresponding to leaves of the stable and unstable foliation
respectively, that are ŋ-orthogonal to the tube. Under the natural
quotient map q

K
, these left-cosets project to horospheres, with q

K
(gP+)

a horosphere “centered” at the point at infinity given by following
t 7→ q

K
(g exp(tZ)) as t → +∞ and q

K
(gG−) a horosphere “centered” at

the point at infinity given by following t 7→ q
K
(g exp(tZ)) as t → −∞.

These horospheres are tangent at q
K
(g), and both are transverse to the

image of the leaf of the neutral foliation.
In the semisimple case, we can get a lot of useful intuition for ŋ from

the duality between p+ and g−. For each eigenspace gλ of adZ with
positive eigenvalue λ, there is another eigenspace g−λ with negative
eigenvalue −λ, and they pair together under the Killing form. In the
picture above, ω−1

G
(gλ) is tangent to the stable foliation and ω−1

G
(g−λ)

is tangent to the unstable foliation, and they project to the same sub-
space of the tangent space under the natural quotient map q

K
, so the

pairing can sort of be seen from the canonical Riemannian metric being
positive-definite.

For us, though, the crucial takeaway from this duality is what it tells
us about the horospherical subalgebra p+. We’ve already seen that p+
is ŋ-orthogonal to both itself and g0. Because each element Y ∈ p+ has
an element X ∈ g− for which ŋ(X, Y ) ̸= 0, this then tells us that p⊥+ is
precisely the Lie subalgebra p of the stabilizer of the point at infinity.
By nondegeneracy of ŋ, we therefore have p⊥ = p+.
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We should think of the existence of these nilpotent, horospherical
subalgebras p+ that are ŋ-orthogonal to all of p as the defining char-
acteristic of parabolic subalgebras. Indeed, their existence is precisely
the property that we will use to define parabolicity.2

Definition 3.1. A subalgebra p ≤ g is parabolic if and only if p⊥ is
a nilpotent subalgebra. A parabolic subgroup P ≤ G, then, is a closed
subgroup whose Lie subalgebra p is parabolic.

Next time, we will take this definition and attempt to build some
useful tools for working with parabolic subgroups. Additionally, we will
construct a fixed point at infinity for each (proper) parabolic subgroup.
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